[tex: ]

線型方程式

三井の論文に出てくるイデアル数

三井孝美の論文 https://www.jstage.jst.go.jp/article/jjm1924/26/0/26_0_1/_pdf や本 https://www.iwanami.co.jp/book/b265375.html に、イデアル数なる怪しい概念が出てきます。それの現代的な定式化をします。 三井が使っているイデアル数の概念はナゾな…

Ben Green's lectures on nilsequences

Go back to the program https://motivichomotopy.hatenablog.jp/entry/2020/10/19/171757 Green's page about the videos http://people.maths.ox.ac.uk/greenbj/videos.html Lecture 1 http://www.youtube.com/watch?v=HM3jR0b4VHY 1:18:00 Explains the v…

The norm of polynomial maps

This excerpt from https://arxiv.org/abs/1311.6170 summarizes basic facts on the norm of polynomial maps. Recall that the norm $\Vert \theta \Vert _{R/Z}\in [0,1/2]$ of a real number $\theta $ is the distance from $\theta $ to the closest i…

メビウス論文 Type I case の証明の検討

https://dx.doi.org/10.4007/annals.2012.175.2.3 のp.549を読んでいます。 個数$\gg \delta ^{O(c_1)} K$個以上の$k\in (K,2K] $に対して不等式 \[ \mathbb E _{w, N^{0.9}<kw\le N } 1_{P}(kw) F(g(kw) ) \gg \delta ^{O(c_1)} \] が成り立つ状況を考えています。$P\subset [N]$は等差数列です。$c_1>0$は定理2.1の$c>0$に対応する、あとで決める小さな正の数です。 初めから$kw\in P$</kw\le>…

前の記事への補足

曲線の場合 $V_1\to V$を正規化とします。$V_1$にはWeilの定理が適用できて \[ |V_1(\mathbf F_q) -(q+1) | \le 2g q^{1/2} \] (だそう) です。$V_1$の種数$g$は$\le (d-1)(d-2)/2$と評価できます(だそうです;Riemann-Rochとかから出るのでしょう)。そこ…

Lang-Weil による解の個数の評価

表題はもちろん、Lang-Weilの有名論文「Number of Points ...」の定理1のことです。Tao氏によるよくまとまった記事があるので、それを読んでいただいても良いと思います。 主張を(現代の用語で)述べます。$V$を有限体$\mathbf F_q $上の幾何的に整な$r$次…

Divisor function

Let $K$ be a number field. For a non-zero ideal $\mathfrak a$, write $t(\mathfrak a)$ for the number of its divisors (in the multiplicative monoid of non-zero ideals). It's called the divisor function. I wanted to type tau but as always ha…

Vaughan's decomposition 2

In the previous post we estimated the first term on the right hand side of: \[ \mathbb E_{N^{0.9} < n \le N }\mu (n)\bar f(n) = - \mathbb E_{N^{0.9}<n\le N } \sum _{b\le U,c\le V , bc|n } \mu (b) \mu (c) \bar f(n) + \mathbb E_{N^{0.9}<n\le N } \sum _{b> U,c> V , bc|n } \mu (b) \mu (c) \bar f(n) . \]…</n\le>

Vaughan's decomposition

In this post I will perform a routine task of verifying something routine. Let $U,V,N$ be positive integers satisfying $UV < N^{0.9}$. The exponent here can be replaced by any positive number $<1$ but I don't want to complicate the notatio…

Green-Tao-Ziegler theorem implies that for the localized integers

In a paper on rational points on varieties, they exploit the Green-Tao-Ziegler theorem. One way to state the theorem is as follows. Let $L_i(x,y)\in \mathbb Z [x,y]$ (i=1, ..., r) be finitely many homogeneous polynomials of degree 1 and as…

TaoのHigher order Fourier analysis第1章

数列の均等分布の理論が説明されていて面白そうです。 第1章は、証明を付けて欲しいところなのに演習問題とされているものが少々多すぎますね。 Exercise 1.1.16 Single-scale均等分布を仮定するとasymptotic均等分布が出るのは割と自明です。 逆を示すには…

C言語とGNU plot

学部時代に教わったC言語とGNU plotのスキルのみで、このAI時代の荒波に立ち向かおうと奮闘しているわけですが、、、 C言語による計算 C言語はmacのパソコンなら開封した瞬間から使えるようです。C言語の基礎的なことはオンラインでも学べます。例えば なん…

Draft for seminar program

Each lecture hopefully requires only 1 hour. Part 1: Introduction - 3 lectures - [L] Part 2: Generalities of Nilsequences - 2 or 3 lectures - [Q] Part 3: Equidistribution - 2 lectures - [Book] and [P] Part 4: MN(s) - 1 lecture - [M] Part 5…

Gowersノルムと、逆予想の逆

Gowersノルムは、整数$s\ge 0$を固定するごとに与えられます。有限アーベル群$Z$上の関数$f\colon Z\to \mathbb C$に対して定義されます。$\Vert f \Vert _{U^{s+1} (Z) }$は次の値の$2^{s+1}$乗根です:\[ \Vert f \Vert _{U^{s+1}(Z)} ^{2^{s+1} }:= \math…

単連結な冪零リー群についての事実まとめ

Baker-Campbell-Hausdorffの定理というものがあります (Wikipedia)。$G$をリー群、$\mathfrak g$をそのリー環、$X\mapsto e^X$をその指数関数とするとき、$X,Y\in \mathfrak g$が十分原点に近い範囲で、\[ e^X e^Y =e^Z \text{ と書く時, }Z= X+Y+\frac 1 2 …

冪零列

線型方程式に関する勉強をしています。 この記事では、冪零列 (nilsequence) の概念を考えたいと思います。この概念は、リンク先の論文の §8 で説明されています。Green氏による2014年の連続講義がYouTubeのIHESのチャンネルに上がっているので、勉強になる…